Particle Swarm Optimization of Information-Content Weighting of Symbolic Aggregate Approximation
نویسنده
چکیده
Bio-inspired optimization algorithms have been gaining more popularity recently. One of the most important of these algorithms is particle swarm optimization (PSO). PSO is based on the collective intelligence of a swam of particles. Each particle explores a part of the search space looking for the optimal position and adjusts its position according to two factors; the first is its own experience and the second is the collective experience of the whole swarm. PSO has been successfully used to solve many optimization problems. In this work we use PSO to improve the performance of a well-known representation method of time series data which is the symbolic aggregate approximation (SAX). As with other time series representation methods, SAX results in loss of information when applied to represent time series. In this paper we use PSO to propose a new minimum distance WMD for SAX to remedy this problem. Unlike the original minimum distance, the new distance sets different weights to different segments of the time series according to their information content. This weighted minimum distance enhances the performance of SAX as we show through experiments using different time series datasets.
منابع مشابه
Optimization of the Inflationary Inventory Control Model under Stochastic Conditions with Simpson Approximation: Particle Swarm Optimization Approach
In this study, we considered an inflationary inventory control model under non-deterministic conditions. We assumed the inflation rate as a normal distribution, with any arbitrary probability density function (pdf). The objective function was to minimize the total discount cost of the inventory system. We used two methods to solve this problem. One was the classic numerical approach which turne...
متن کاملA Weighted Minimum Distance Using Hybridization of Particle Swarm Optimization and Bacterial Foraging
In a previous work we used a popular bio-inspired algorithm; particle swam optimization (PSO) to improve the performance of a well-known representation method of time series data which is the symbolic aggregate approximation (SAX), where PSO was used to propose a new weighted minimum distance WMD for SAX to recover some of the information loss resulting from the original minimum distance MINDIS...
متن کاملFeature Weighting Improvement of Web Text Categorization Based on Particle Swarm Optimization Algorithm
It is usually true that some structures like title can express the main content of texts, and these structures may have an influence on the effectiveness of text categorization. However, the most common feature weighting algorithms, called term frequency-inverse document frequency (TF-IDF) doesn’t think about the structural information of texts. To solve this problem, a new feature weighting al...
متن کاملOne-Step or Two-Step Optimization and the Overfitting Phenomenon - A Case Study on Time Series Classification
For the last few decades, optimization has been developing at a fast rate. Bio-inspired optimization algorithms are metaheuristics inspired by nature. These algorithms have been applied to solve different problems in engineering, economics, and other domains. Bio-inspired algorithms have also been applied in different branches of information technology such as networking and software engineerin...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کامل